1 research outputs found

    Detailed model for robust feedback design of main steam temperatures in coal fired boilers

    Get PDF
    Main steam temperatures play a significant role in large coal fired power plant operation. Ideally, main steam temperatures should be accurately controlled to protect the thick wall components against long term overheating and thermal stress while meeting the design conditions at the steam turbine inlet. Although high steam temperatures are beneficial for thermal efficiency, it accelerates creep damage in high temperature components which is detrimental to the life of components. Alternatively, low steam temperatures increase the moisture content at the last stage blades of the turbine, causing the blades to deteriorate and fail. Control of the outlet steam temperature according to design conditions at variable loads is maintained via a balance between heat input (flue gas temperature and mass flow rate), evaporator outlet steam mass flow and spray water. The present control philosophy accuracy of main steam temperatures at an Eskom coal fired power plant was evaluated and compared to the latest technology and control strategies. Improving and optimizing steam temperature controls ensures design efficiency while maintaining long term plant health. The level of spatial discretization applied in simplifying the real boiler for modelling purposes was approached at a relatively high level. The intention was to model normal operating conditions and certain transients such as variable heat input and load changes to see its effect on steam temperatures and to be able to evaluate the performance of different temperature control techniques. The main outcome of this project was to design a robust control system for a dynamic model of the boiler using sets of low order linear models to account for uncertainty. The main concepts, models and theories used in the development of this dissertation include: 1) A detailed thermo-fluid model developed using Flownex to have high fidelity models of the process under varying operating conditions. This model was used to test and evaluate the robust controller design. 2) System Identification in Matlab to construct mathematical models of dynamic systems from measured inputoutput data and identify linear continuous time transfer functions under all operating conditions [1]. 3) Quantitative Feedback Theory (QFT) to design controllers for an attemperator control system at various onload operating conditions. This design was used understand the engineering requirements and seeks to design fixed gain controllers that will give desired performance under all operating conditions. 4) The design of a valve position controller to increase the heat uptake in a convective pass, thereby improving efficiency: Excessive attemperation in the superheater passes is generally associated with high flue gas temperatures which decrease thermal efficiency. Therefore, robust control of the attemperation system leads to an increase in heat uptake between the flue gas and steam in the boiler, resulting in a reduction in the flue gas temperature leaving the boiler, thus improving efficiency. The robust QFT controllers were set up using the valve position control technique and were used to confirm the improvement of control performance. The theories mentioned above were used to understand the control performance under varying plant conditions using a standard cascaded arrangement. It incorporated robust control design and engineering requirements such as bandwidth, plant life, spray water and thermodynamic efficiency. The control effort allocated to each superheaterattemperator subsystem in the convective pass was designed as a multi-loop problem
    corecore